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Abstract

This thesis deals with the analysis of random data. Two approaches are
discussed. The first approach is a Goodness of Fit test to determine whether
or not random data samples are statistically consistent with a prespecified
probability distribution. The well-known Kolmogorov-Smirnov test, Chi-
Square test, Q-Q Plots and P-P plots are reviewed and illustrated by means
of several examples. A new algorithm, the Ozturk Algorithm, is introduced.

The second approach deals with approximation of the underlying prob-
ability density function of random data samples. The previously mentioned
well-known tests are not suitable for this task. However, the Ozturk Al-
gorithm provides a powerful solution for this problem with a nice graphical
interpretation. Finally, computer simulated results obtained with the Ozturk
Algorithm are presented and discussed.
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Chapter 1

Literature Review

1.1 Introduction

In the analysis of random data, we encounter situations where there may be various
statistical models or “hypotheses” that need to be checked against the data. The
usual situation is that one has a particular probability distribution in mind to be
tested or checked for consistency in representing data from a certain experiment. The
hypothesis that this distribution is the right one is called the null hypothesis, often
denoted by Hy. This hypothesis may have emerged from long experience associated
with an experiment and it is desired to see whether the hypothesis is still correct when
there has been some change in circumstances that call it into question. Alternatively,
the hypothesis may be the result of a theoretical analysis or a logical argument and
the theory needs to be verified.

A null hypothesis is ordinarily taken to be quite specific. In particular, location,
scale and shape parameters associated with the probability density function are speci-
fied along with the type of distribution. For example, the probability density function
of the Weibull distribution changes as its shape parameter is changed. Therefore,
Weibull distribution having a different shape parameter from the Weibull distribu-
tion of the null hypothesis are assumed to be different. All the other distributions,
taken together, define what is referred to as the alternative hypothesis, denoted by
H;. Therefore, another question that arises in the analysis of random data is “If
the null hypothesis is not true, what are suitable approximations to the underlying'
distribution of the data?”

To answer these questions, several tests have been proposed and used. Each of these




tests have their own strengths and weaknesses. Some may work well for a particular
set of density functions, but poorly for others. We focus our attention on four of the
most frequently used tests for analyzing random data. Detailed discussions of these

tests follow.

1.2 The Kolmogorov-Smirnov Test

This test is based on the idea of a “sample distribution function”, a statistic that
is the sample version of the population distribution function.

Given a sample (X;, X3,...,X,) of size n, the sample distribution function is the
cumulative distribution function (cdf) of a discrete probability density function where
the random variable assumes the values X;, X, ... , Xn with probability 1/n. Conse-
quently, the cdf increases in steps of size 1/n at each sample value. rising from 0 to

the left of the smallest .X; to 1 at the largest X;.
1.2.1 Example[13]

Consider a sample of the following 5 observations.

2.22,-0.83,0.18,1.18,2.05.

The sample distribution function is easily constructed after the sample values are
marked on the x-axis: Starting at height zero for the values less than -0.83. the cdf is
increased successively by steps of height 1/5 at the ordered sample value -0.83, 0.18,
1.18, 2.05, and 2.22. The result is shown in fig.1.1.

The Kolmogorov-Smirnov test statistic is defined as the maximum absolute vertical
deviation D,, of the sample distribution function, F,(x), from the cdf, Fy(x), specified
by the null hypothesis Ho. If the fit is good, D, is expected to have a small value.
On the other hand, if the underlying distribution has a cdf significantly different from
Fo(x), it is expected that the fit will be poor and D, will be large. Consequently, if
values of D, exceed a pre-specified value, called the acceptance limit, Hy is rejected.
Fortunately, the distribution of the statistic D, depends only on the sample size
and not on the shape of the distribution being tested. The distribution of D,, has
been computed under the assumption that the null hypothesis holds. Results of the
acceptance limits are given in table 1.1 [12] and [13] for different sample sizes and for

various pre-selected values of
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Figure 1.1: Sample Distribution function for example 1.1.1

a = Pr(reject Hy|Hy true) (1.1)

where « is called the significance level. For large values of n, asymptotic formulae are
given for the acceptance limits. In summary, the test consists of the following steps:
1) Plot F,(x) and Fy(x) in the co-ordinate axes.

2) By inspection, determine the maximum vertical absolute deviation, given by,

D, ="2" |Fo(z) — Fo(z)|. (1.2)
3) Select a significance level
a = Pr(reject Ho|Hy true). (1.3)

4) Accept Hp if D, < K and reject otherwise.
Note that




1 — a = Pr(accept HolHp true). (1.4)

Let the cdf of D, be denoted by Fp,(z|Hp). It follows that

Pr(D, > K|Ho) = 1 — Fp,.(K|Hop) = a. (1.5)

Consequently, K is the 100 x (1 — «) percentile of Fp,_(z|Ho).

1.2.2 Example{13]

Let the null hypothesis Fo(x) be Gaussian with mean = 32 and standard deviation
= 1.8. Consider the 10 observations: 31.0, 31.4, 33.3, 33.4, 33.4, 33.5, 33.7, 34.4,
34.9, 36.2. The corresponding sample distribution function F,(x), is sketched in
fig.1.2. along with the normal distribution whose mean is 32 and whose standard
deviation is 1.8. Assume the significance level is chosen to be a = 0.05. From fig.1.2
it is determined that the maximum deviation D,, between the two curves is 0.56.
From table 1.1 the acceptance limit is i = 0.409. Since D,, > K, Hy is rejected.

Although the Kolmogorov-Smirnov test is found to perform quite well even for

small sample sizes, it has two principal disadvantages.

1. To perform the test it is necessary to have a priori knowledge about

the data in order to be able to specify meaningful null hypotheses.

2. When the null distribution is rejected. no information is provided
about which distributions are suitable for approximating the un-

derlying distribution of the data.

1.3 The Chi-Square Test

The chi-square test was originally developed for discrete random variables. It is ap-
plied to the case of continuous random variables by making a discrete approximation
to the continuous probability density function. Since the distribution of the statistic
used becomes tractable only as the sample size becomes infinite, the chi-square test
should be employed only for large sample sizes.

Consider a null hypothesis with probability density function fo(z) and distribution

function Fy(z), as shown in fig.1.3. Divide the x-axis into k contiguous intervals




Sample size

Significance level

(n) 0.20 | 0.15 | 0.10 | 0.05 | 0.01
1 0.900 | 0.925 | 0.950 § 0.975 [ 0.995
2 0.684 | 0.726 | 0.776 | 0.842 | 0.929
3 0.565 { 0.597 | 0.642 | 0.708 | 0.829
4 0.494 | 0.525 | 0.564 | 0.624 | 0.734
5 0.446 | 0.474 | 0.510 § 0.563 | 0.669
6 0.410 | 0.436 | 0.470 | 0.521 | 0.618
7 0.381 | 0.405 | 0.438 | 0.486 | 0.577
8 0.358 | 0.381 | 0.411 } 0.457 | 0.543
9 0.339 | 0.360 | 0.388 | 0.432 | 0.514
10 0.322 | 0.342 | 0.368 | 0.409 | 0.486
11 0.307 ] 0.326 | 0.352 | 0.391 | 0.468
12 0.295 | 0.313 | 0.338 | 0.375 | 0.450
13 0.284 | 0.302 | 0.325 | 0.361 | 0.433
14 0.274 | 0.292 | 0.314 | 0.349 | 0.418
15 0.266 | 0.283 | 0.304 | 0.338 | 0.375
16 0.258 | 0.274 | 0.295 | 0.328 | 0.391
17 0.250 | 0.266 | 0.286 | 0.318 | 0.380
18 0.244 1 0.259 | 0.278 | 0.309 | 0.270
19 0.237 | 0.252 | 0.272 | 0.301 | 0.361
20 0.231 | 0.246 | 0.264 | 0.294 | 0.352
25 0.21 | 0.22 | 0.24 } 0.264 | 0.32
30 0.19 { 0.20 | 0.22 |0.242 | 0.29
35 0.18 | 0.19 | 0.21 | 0.23 | 0.27
40 0.21 | 0.25
50 0.19 | 0.23
60 0.17 | 0.21
70 0.16 | 0.19
80 0.15 | 0.18
90 0.14
100 0.14

Asymptotic formula:

1.U7

1.14
n

1.22

1.36
n

1.63
n

Table 1.1: Acceptance limits for the Kolmogorov-Smirnov test
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Figure 1.2: The Distribution function for example 1.2.2.
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E\, E,,...,E; from left to right. Note that the ¢** interval, E;, consists of the set of
points such that

a;i-1 <z <a

where ag = —oo and a; = +00. Consequently, a;_; and a; are the end points of the
ith interval, E;.

Define the probabilities

pi = P'I‘(_X € E,) = Pr(a,-_l <X <L a,’_l) (16)
= (Fylai) - Folaio)); i=1.2,....k

Ovbserve that p; is the area under fo(x) between x = a;—; and x = a;. Also,
k
> opi=1 (1.7)
i=1

Now consider a random experiment consisting of n independent trials. Define

fi = (number of outcomes in E;).

According to the relative frequency concept,

o
pi = lim —~ | (1.8)
Note that
i .
Zfi =n. . (19)
i=1

To test whether the null hypothesis is statistically consistent with the data, the
statistic
2 i (fi — npi)2
xi= Z ALLBE AL 20 (1.10)

=1 np;

is evaluated. The null hypothesis is rejected when x? exceeds a critical level M. To

determine M, the significance level
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Figure 1.3: The Distribution function and PDF divided into intervals.




a = Pr(reject Ho|Hy true) (1.11)

is specified. Observe that

a = Pr(x* > M|Hy) = (1 — F\2(M)) (1.12)

where Fy(.) denotes the distribution function of the x? statistic. Since

Fa(M)=1-a (1.13)

M is the 100 x (1 — «) percentile of the x? statistic. M is also referred to as the
rejection limit. Values of M are tabulated in table 1.2 [12] and {13].

The exact distribution of the statistic x? is not simple and depends on the p;’s in the
null distribution (Hp) and the distribution under test. However, remarkably, it was
found that these difficulties disappear as the sample size n, becomes large [12]. The
distribution of x? under Hy for large n is approximately one of the family of chi-square
distributions, depending on the number of intervals, k, but not on the distribution
under test. This family of distributions is characterized by the number of degrees
of freedom, defined to be k-1. Various percentiles of the chi-square distribution, for.

selected numbers of degrees of freedom, are given in table 1.2
1.3.1 Example[13]

Two hundred measurements of viscosity are given in table 1.3. The table gives
frequencies f; corresponding to the ten intervals. Data given in the table can be used
to test the hypothesis that the probability density function (PDF) from which they
come is normal with mean 32 and standard deviation 1.8. We select the significance
level a to be 0.05, so that M equals the 95 percentile of the x? distribution. Table
1.3 shows that k, the number of intervals is 10. Consequently, the number of degrees
of freedom given by k — 1 equals 9. By extracting the 95" percentile of the x*
distribution with 9 degrees of freedom from table 1.2 it is seen that M = 16.9.

To illustrate the computations in table 1.3, the entry for p,4 is obtained from the

normal distribution function by means of eq. 1.6. Hence,

11




Degrees ! p
of ’

freedom |.01  .025 .0§ 10 .70 80 90 95 97% 99
I 1.000 .001 .004 .016° 1.0 1.64 271 3.84 5.02 6.63
2 ;020 051 103 211 241 322 461 599 7.38 9.21
3 115 2160 352 584 3.66 464 625 7.81 9.35 113
4 1.297 484 711 1.06 488 599 778 9.49 11.1 13.3
5 :.3534 831 115 1.61 6.06 729 9.24 11.1 12.8 15.1
6 1872 1.24 164 220 723 856 106 126 14.4 16.8
7 11.24 169217 283 838 9.80 12.0 141 16.0 185
8 c 165 218 273 349 952 11.0 134 155 175 2041
9 1209 270 3.33 417 107 122 147 169 190 21.7

10 12,56 325 394 487 118 134 160 183 20.5 232
11 13.05° 382 4.57 5358 129 146 173 197 219 247
12 F3.57 440 523 630 140 158 185 21.0 23.3 26.2
13 ;411 501 5.89 7.04 151 17.0 198 224 247 277
14 1466 563 6.57 7.79 16.2 182 21.1 23.7 26.1 29.1
13 1523 626 7.26 855 173 193 223 250 27.5 306
16 '5.81 691 7.96 9.31 184 20.5 23.5. 263 288 32.0
17 l6.41 7.56 8.67 10.1 195 21.6 248 27.6 30.2 33.4
18 1 7.01 823 939 109 206 228 260 289 31.5 348
19 7.63 891 101 11.7 217 239 27.2.30.1 329 36.2
20 826 9.59 109 124 228 250 284 314 342 376
21 890 10.3 11.6 132 239 262 296 327 355 389
22 9.54 11.0 123 140 249 273 308 339 36.8 403
23 102 117 13.1 148 260 284 32.0 352 38.1 416
24 109 124 138 157 27.1 296 332 364 39.4 43.0
25 1.5 13,1 146 165 28.2 30.7 3344 377 40.6 443
26 122 138 154 173 292 31.8 356 389 419 156
27 129 146 162 181 303 329 36.7 40.1 432 470
28 136 153 169 189 314 340 379 413 445 483
29 143 16.0 17.7 19.8 325 351 39.1 426 457 49.6
30 150 16.8 185 20.6 335 36.2 40.3 43.8 47.0 509
40 22.1 244 265 29.0 442 473 51.8 358 593 637
50 29.7 323 348 377 547 3582 632 675 71.4 762
60 37.5 405 432 465 652 690 744 79.1 833 88.4

Table 1.2: Percentiles of the Chi-Squared Distribution




i interval Di 200p; | fi (f. - 200;7,')2 =z z,-/(200p,~)
1 <27.85 0.0105 | 2.10 3 0.81 0.3857
2 | 27.85-28.95 | 0.0346 | 6.92 7 0.0064 0.0009
3 | 28.95-30.05 | 0.0943 | 18.86 | 25 37.65 1.1996
4 | 30.05-31.15 | 0.1791 | 35.82 | 42 38.10 1.06
5 | 31.15-32.25 | 0.2388 | 47.76 | 56 67.90 1.422
6 | 32.25-33.35 | 0.2161 | 43.22 | 30 174.50 4.037
7 | 33.35-34.45 | 0.1399 | 27.98 | 22 35.80 1.279
8 | 34.45-35.55 1 0.0624 | 12.48 | 11 2.19 0.175
9 | 35.55-36.65 | 0.0195 | 3.90 3 0.81 0.208
10 >36.65 0.0048 | 0.96 1 0.0016 0.0017

Table 1.3: Measurements of viscosity for example 1.3.1

31.15 — 32 30.05 — 32
Pr(30.05 < X < 31.15) = @(31 5-3 )_@(30 05— 3 )
1.8 1.8
= 0.1791 (1.14)
where Fo(:l,') = (I)(E.;.‘_SZ) and
d(z) = /_Oo ;Tr.e"zﬂ/?du = Pr(X < a). (1.15)

Values of ®(z) are obtained from a table for the standard normal distribution function.
The statistic x? is obtained by summing the entries in the last column, with the
result x2 = 10.16. This does not exceed the 95" percentile of the chi-square distribu-
tion with 9 “degrees of freedom”, i.e. 2 < M. The chi-square test, therefore, calls
for accepting the null distribution on the basis of the given data.
Notice that the chi-square test does not test Fo(x) but only the p;’s. In particular,

the natural order of the intervals does not enter the test. Moreover, Fy is not the

_only distribution function having the p;’s obtained from F;. Despite these minor

objections, the chi-square test is frequently used in testing a continuous distribution.
The chi-square test suffers from the same disadvantages as mentioned earlier for the

Kolmogorov-Smirnov test. In addition, it has one more disadvantage, viz., it requires

a large sample size to give accurate results.




1.4 Q-Q (Quantile-Quantile) Plot

A Q-Q plot is a special plot or graphical technique which can be performed to
assess the marginal distribution of the sample observations. Consider a set of data of
size n given by z1,%3,...,z,. Let the data be rank ordered such that z() < z() <

... £ Z(n). For the gt ordered sample z(;), define

o j=1/2 .
PG) = (1.16)

n
where the 1/2 is introduced as a “continuity correction” {14]. Let Fx(x) denote the
cumulative distribution function of the data. For large enough sample values of n, it

then follows that

Fx(z()) = Pr(X < z(5)) = p)- (1.17)

Denote the cdf of the null distribution by Fo(z). The quantile of Fy(z), denoted by‘
q(j) is related to p(;) by

Folqi)) = Pr(Z < q)) = pg)- (1.18)

If the data comes from the same distribution as the null distribution, then

T(j) = q() - (1.19)

and z(;) can be interpreted as an estimate of the sample quantile. -
A Q-Q plot is generated using the following steps:
1) Collect n data points zi, z,. .., Zy.
2) Rank order the data such that z(;) < z(3) < ... < zp).
3) Define
j—1/2

PG) = T ;o J

4) Evaluate the quantile ¢(;) defined by

Folay) =pgy 7=1,2...,n.
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] Ordered Probability levels | Standard normal
observations z(;y | pyy = (j = 1/2)/n quantiles g;y
1 -1.00 0.05 -0.826
2 -0.10 0.15 -0.235
3 0.16 0.25 ‘ 0.116
4 0.41 0.35 0.396
5 0.62 0.45 0.649
6 0.80 0.55 0.891
7 1.26 0.65 1.144
8 1.54 0.75 1.424
9 1.71 0.85 . 1.755
10 2.30 0.95 2.366

Table 1.4: Observation Table for Example 1.4.1

5) Plot the pair of points

(46y> x5 7=1,2,...,n.

When the data comes from the null distribution, the Q-Q plot is likely to approxi-

mate a straight line through the origin at 45°.
1.4.1 Example[14]

A sample of n = 10 observations gives the values tabulated in the 2"¢ column of the
table 1.4. The sample mean and the sample variance are 7 = 0.77 and &% = 0.9414
respectively. The values of p(; are computed in the 3" column. Finally, taking the
normal distribution with mean i and variance 6% as the null distribution, the corre-
sponding quantiles g(;) are evaluated in the 4** column. For example, corresponding

to p) = 0.85

1.775 1 (2_0_77)2
Folge) = Pr(Z < 1.775) = / e~ ST dz = 0.85. (1.20)
- V2mwo?

Consequently, g(g) = 1.775.

The Q-Q plot for the above data, which is a plot of the ordered data ;) against
the normal quantiles g(;), is shown in fig. 1.4. The pair of points (g(;, z(;)) lie very
nearly along a straight line at 45° and we accept the notion that these are normally
distributed with mean = 0.77 and variance = 0.9414.

The straightness of the Q-Q plot can be evaluated by calculating the correlation
coeflicient of the points in the plot. The correlation coefficient for the Q-Q plot is
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Figure 1.4: The Q-Q Plot for Example 1.4.1.
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Sample size | Significance levels o
n 0.01 0.05 0.10
5 0.8299 | 0.8788 | 0.9032
10 0.8801 | 0.9198 | 0.9351
15 0.9126 | 0.9389 | 0.9503
20 0.9269 | 0.9508 | 0.9604
25 0.9410 | 0.9591 | 0.9665
30 0.9479 | 0.96562 | 0.9715
35 0.9538 | 0.9682 | 0.9740
40 0.9599 | 0.9726 | 0.9771
45 0.9632 | 0.9749 | 0.9792
50 0.9671 | 0.9768 | 0.9809
55 0.9695 | 0.9787 | 0.9822
60 0.9720 | 0.9801 | 0.9836
75 0.9771 j 0.9838 | 0.9866
100 0.9822 | 0.9873 | 0.9895
150 0.9879 | 0.9913 | 0.9928
200 0.9905 | 0.9931 { 0.9942
300 0.9935 [ 0.9953 | 0.9960

Table 1.5: Critical Points for the Q-Q Plot Correlation Coefficient Test for Normality

approximated by

Tz —m)gi) — 4
Fo = nZg_l( (J)A )(CI:) ) : (1.21)
\/i:l(l‘(j) - ‘”7-)2\/Zj=1(‘1(i> —4)*
where § is the sample mean of the quantiles ¢(;); 7 = 1,2,...,n. Formally, we select

the null hypothesis at a significance level a if 7o exceeds a critical value denoted by M
[14]. The values of M have been evaluated for the normal distribution and tabulated
in table 1.5 [14] for different sample sizes and significance levels.

For the above example we select a = 0.10. Also, using the information from table
1.4, we find that the mean of the sample quantiles and standard normal quantiles
are, respectively, o = 0.77 and § = 0. Using eq.(1.21), we find that the correlation
coefficient, 7g, is found to be 0.9943. Referring to table 1.5, we find that corresponding
to n = 10 and a = 0.10, the critical point M, for the Q-Q plot correlation coefficient
test for normality is 0.9351. Since #g > 0.9351, we accept the hypothesis of normality.

1.5 P-P (Probability-Probability) Plot
The P-P plot is another graphical technique which is performed for random data

analysis. Just as with the Q-Q plot we consider a set of data of size n given by
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T1,Z2,...,Tn. The data is rank ordered such that z(;) < 25y < ... < T(n). Proceeding

as we did with the Q-Q plot, define for the j** ordered sample, T(j)

j—1/2
n

pG) = (1.22)

where the 1/2 is introduced as a “continuity correction” [14]. Let Fx(x) denote the
cumulative distribution function of the data. From the Q-Q plot we know that the
z(;)’s are the sample quantiles. Denote the cdf of the null distribution by Fy(z). Then
Pz(;, is defined to be the probability such that

If the data comes from the same distribution as the null distribution, it is likely that

Py, & D) (1.24)

and p(;y can be interpreted as an estimate of the probability Pz,

A P-P plot is generated using the following steps:

1) Collect n data points z1,2,,...,Ty.
2) Rank order the data such that z(;) <z < ... < z(q.
3) Define
j-y2 ..
PG = - ; 7=1.2,...,n.

4) Evaluate the probability Pz,, defined by

5) Plot the pair of points

(Pogys P3))s = 1,2,...,n.

When the data comes from the null distribution, the P-P plot is likely to approxi-
mate a straight line through the origin at 45°.
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] Ordered Probability levels | Standard normal
observations z(;) | p(j) = (j — 1/2)/n | probabilities pz

1 -1.00 0.05 0.0342

2 -0.10 0.15 0.1853

3 0.16 0.25 0.2647

4 0.41 0.35 0.3553

5 0.62 0.45 0.4384

6 0.80 0.55 0.5124

7 1.26 0.65 0.6932

8 1.54 0.75 0.7864

9 1.71 0.85 " 0.8336

10 2.30 0.95 0.9424

Table 1.6: Observation Table for Example 1.5.1

1.5.1 Example

We take the example used with the Q-Q plot and find the P-P plot of the given
data. The observations are tabulated in the 2"¢ column of table 1.6. Values of p(;) are
computed in the 2"¢ column. The sample mean and the sample variance are h = 0.77"
and 62 = 0.9414. Finally, taking the normal distribution with mean 72 and variance
&2 as the null distribution, the corresponding probabilities p. ,, are evaluated in the

4tk column. For example, corresponding to z(7) = 1.26

1.26 1 2-0.77)2
Fo(zm) = Pr(Z <1.26) = [ \/2___26-‘ T dz = 0.6932. (1.25)
-0 TC

Consequently, py,, = 0.6932

The P-P plot for the above data, which is a plot of the values p(;) against the
normal probabilities p;,,, is shown in fig. 1.5. The pair of points (p(;), P,,) lie very
nearly along a straight line at 45° and we accept the notion that these are normally
distributed with mean = 0.77 and variance = 0.9414.

The straightness of the P-P plot can be evaluated by approximating the correlation

coefficient

Pp = Z;’l:l(p(j) B ﬁ)(pz‘(,') - pASB)
VEZra1(p6) = B2/ i=a (o) = Pe)?

where p and p; are the sample means of p(;) and ps, respectively, with j =1,2,...,n.

(1.26)

Unfortunately, a table for the critical value M for different values of the significance
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Figure 1.5: The P-P Plot for Example 1.5.1.
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level, a, was not found in the literature. Nevertheless, if #p is close to unity, p;) and

Pzjy are highly correlated and although a significance level cannot be specified, it is

likely that the data can be approximated with the null distribution. For this example,

#p = 0.9960. (1.27)

Since #p & 1, it is concluded that the data is statistically consistent with the normal
distribution having mean 7 = 0.77 and variance o? = 0.9414

An attractive property of the Q-Q plot is that it is invariant to a linear transforma-
tion. Specifically, the Q-Q plot of a linear function of z;) is again a straight line at
45°. However, this time the line need not pass through the origin. P-P plots do not
have this property. The main drawback of these plots is their weak performance for
small and moderate sample sizes. Also, generalization of the Q-Q plot to multivariate
distributions is not straightforward. On the other hand P-P plots can be applied to
the multivariate situation. Although a statistic exists for evaluating the straightness
of the Q-Q plot when the null distribution is standard normal, this statistic is not
readily available for other distributions. Consequently, the Q-Q plots and the P-P
plots do not readily offer a quantative Goodness of Fit test and the decision is mostly

made on a subjective basis.
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Chapter 2

The Ozturk Algorithm

2.1 Introduction

In testing a null hypothesis for a distributional assumption against an unspecified
alternative there is generally no uniformly most powerful or optimal test [2]. Due to
this, various test procedures have been developed for assessing these distributional
assumptions. Under certain conditions, (i.e. for a specified null hypothesis, a speci- |
fied sample size, and a pre-determined level of significance) one test procedure may
be shown to be more powerful than the other existing procedures. Besides the power
consideration of a given test, computational simplicity, desirable distributional prop-
erties of the test statistic and the generality of the test procedure are some of the
important properties to be considered.

Chapter 1 gave a brief overview of some of these tests. The x? test has been
widely used for assesing the distributional assumptions because of its generality and
its computational simplicity [2]. However, the choice of class intervals for computing
the test statistic is arbitrary and the procedure can be used only for large sample sizes.
Q-Q plots and P-P plots are among the most widely used graphical procedures for
making asessment about the random data. But their performance is weak for small
and moderate sample sizes. Also, generalizations of Q-Q plots to the multivariate-
distributions are not simple [5], [6]. As described in [9], [12] and [13], the Kolmogorov-
Smrinov test, which is based on the empirical distribution function of the sample aﬁd
the null distribution, is widely used too. In fact, comparative studies have shown
that the Kolmogorov-Smirnov statistic has higher power than the x? statistic for

many alternatives [2]. There are many other tests such as the W test (by Shapiro
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and Wilk), Anderson’s A test [2], etc.

All these tests are Goodness of Fit tests.To within a certain confidence level, these
tests provide information about whether a set of random data is statistically consistent
with a specified null distribution. However, if the specified distribution is rejected,
these tests give no clue about the alternative underlying distribution of the data."
Thus, we need to have a priori knowledge about the random data to be able to use
these tests. In practice, a lot of times we have no a priori knowledge about the random
signals. For example, the clutter PDF encountered in radar signal processing is not
known a priori. Moreover, a lot of these tests require a large number of observations to
Agive accurate results. To get these many observations may prove costly in a real world
situation. Consequently, a scheme is necessary, that not only performs the Goodness
of Fit test but also approximates the PDF for small number of observations.

A new algorithm based on sample order statistics has been developed in 1] through
(3] and has been reported in [10] for univariate distribution approximation. This
algorithm has two modes of operation. In the first mode, the algorithm performs
a Goodness of Fit test. Specifically, the test determines, to a desired confidence
level, whether the random data is statistically consistent with a specified probability
distribution. In the second mode of operation, the algorithm approximates the PDF -
underlying the rahdom data. In particular, by analyzing the random data and without
any a priori knowledge, the algorithm identifies from a stored library of PDFs that
density function which best approximates the data. Estimates of the location, scale,
and shape parameters of the PDF are provided by the algorithm. The algorithm is
typically found to work well for observation sizes of the order of 75-100.

In this chapter we present the Ozturk algorithm. It will be demonstrated through
examples that the algorithm can be used to test for any distributional assumption
(not limited to location-scale family) including univariate and multivariate random

variables.

2.2 Definitions
Let Fy(y) denote the PDF of a random variable Y. Consider the linear transfor-
mation defined by

x:ﬂy+a.' (2.1)
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The PDF of X is given by

1
18]

where o and f are defined to be the location and scale parameters of fx(x), respec-

Ix(@) = T fr (=) (2:2)

tively. The mean p, and the variance o2 of the random variable x are given by

o2 = E[(z — pa)?, | (23)

where E is the expectation operator.

Although the mean and the variance are related to the location and scale parame-
ters, note that the location parameter is not the mean value and the scale parameter
is not the square root of the variance, in general. However, for a standard Gaussian
PDF fy(y), for which the mean is zero and variance unity, the location parameter is
the mean of X and the scale parameter is the standard deviation (square root of the
variance) of X.

The coefficient of skewness a3, and the coefficient of kurtosis a4, of X are defined

to be

E((z—us)®
a3 = Iagu
El(z—pz)t
ay = _L(%f_)l (2.4)

It is readily shown that a3 and a4 are invariant to the values of u, and o,. For
any PDF that is symmetric about the mean, a3 = 0. For the case of the Gaussian

distribution, a3 = 0 and a4 = 3.

2.3 The Ozturk Algorithm

Any distribution, or a family of distributions, can be represented by a single point or
by a region on an a3 — a4 plane, respectively, where o is the coefficient of skewness
and a4 is the coefficient of kurtosis (see for example [15], p.14). A set of random

data can also be represented by a point whose co-ordinates are given by the sample
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estimates of a3 and a4. Then the best candidate for the underlying true distribution
can be identified tobe the nearest neighbour distribution on the chart. Although such
a chart, based on the coefficient of skewness and kurtosis, provides a useful way of
characterizing the distributions, its use is limited by the fact that the moments of

some distributions do not exist. Other drawbacks of this approach are

1. Estimates of a3 and a4 are highly sensitive to extreme observa-

tions.

2. Estimates of these moments are highly biased for small sample

sizes [4].

3. The moment estimators are greatly affected by outliers.

In this chapter we introduce the Ozturk Algorithm, a general graphical technique

which works in two specific modes.

1. In the first mode it performs a formal Goodness of Fit test for a

specified null distribution.

2. Inits second mode it provides a graphical representation that gives
insight into what distribution best approximates the data set and

thus provides a way of characterizing the data.

2.3.1 Goodness of Fit Test

The Goodness of Fit test is a complex algorithm which determines whether or not
the set of data samples provided to the algorithm is statistically consistent with a
specified distribution (the null hypothesis). Using the standard normal distribution
with zero mean and unit variance as the reference distribution, the standardized sam-
ple order statistics are represented by a system of linked vectors. The terminal point_
of the linked vectors, as well as the shape of their trajectories, are used in determining
whether or not to accept the null hypothesis. In its present form the algorithm uses
the standard Gaussian distribution as the reference distribution. However, any other
distribution could be used as the reference distribution. The null hypothesis is the
distribution against which the sample data is to be tested. Note that the reference

distribution need not be the same as the null distribution.
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We begin by introducing several sample order statistics used in the algorithm and

then proceed to explain the Goodness of Fit test procedure

Consider the following three sets of data size n:

1. A sample data set
X1, X2, X3y ...y Xn-

with mean and standard deviation given by p, and o.

2. A null hypothesis data set

Zl';Z21Z3a-'-sZn

generated from any available distribution against which the sam-
ple set will be tested. The mean and standard deviation of this

data set are defined to be u, and o, respectively.

3. A reference distribution data set
VVla W2a W3a R Wn

generated from the standardized Gaussian.

Let X1 < X2 € ... € Xp.n denote the ordered set of samples obtained by

ordering X;;z = 1,2,...,n, where Xj., is the smallest data samlt;le. Similiarly, the

other two data sets are ordered resulting in the three ordered data sets

e 7
)llzna ‘X2:na “AZingy ey -‘Yn:n
Zl:'n.a Z2:m Z3:na LR} Zn:n
' Wl:'m WZ:na W3:na ey Wn:n-

Define
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where 4, = ¥ X;/n is the sample mean and &, = S[(X; — pz)?/(n — 1)]¥/? is the
sample standard deviation. These are the standardized order statistics of the sample
data. For the null hypothesis, a Monte Carlo simulation consisting of 2,000 trials is

utilized. The estimate of the expected value of the standardized :** order statistic is
~ defined as

, 1 X (Zin)k — fi= .
Ton =005 20— g i= L2 (27)

where (Z;.n )k denotes the ith order statistic from the k** Monte Carlo trial, and (i, and
¢, denote the sample mean and sample standard deviation. Also, 7., is defined as the
estimate of the expected value of the i** order statistic of the reference distribution,
the standardized Gaussian. Using 2,000 Monte Carlo trials,

{2000 '

Mim = m;;:](u/im)k; i=1,2,...,n (2.8)
where (W,.,)x denotes the i** order statistic from the k** Monte Carlo trial of the
reference distribution. When the null hypothesis is the reference distribution, the
standardized Gaussian, then

A

Ti:n = Thi:n' (29)

The Goodness of Fit test proceeds by joining together two sets of n linked vectors,
one for the sample data and one for the null hypothesis. The i** linked vector in each
set is characterized by its length and orientation with respect to the horizontal axis.
For the sample data, the length of the i** vector, a;, is obtained from the magnitude
of the ¢** standardized order statistic of the data, while its angle or orientation, 6;, is

related to 7n;.,. More specifically, for the sample data

o = Yinl
n
. 1 z t?
0 = 1p(1hin) 1 o(z) = \/—2‘—7r/_°o exp(—7)dt. (2.10)

¢, is the cumulative distribution of the standard Gaussian distribution. We define

the sample points Q)4 in a two dimensional plane (U, V) by
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Qr=(Ur, Vi) k=12,...,n (2.11)

where Uy = Vp = 0 and

k
U = lZIY,nlcos
Lz:l
1 k
Vi = AZD’,nIsm i) (2.12).
=1 ) .
k=1,2,...,n

Similiarly, for the null hypothesis the length of the ¢** vector, b;, is obtained from
the magnitude of the ;** standardized order statistic of the null data set. Specifically,
for the null data

bi — | i:nl’ 01’ — 7n'¢(mi:n)~ (213)

Using the same two dimensional plane, we plot the sample points for the null distri-

bution defined by

Qox = (Uok, Vor) s k=1,2,...,n (2.14)

where, Uoo = ‘/00 =0 and

1 & s
Uok = = > |Tin| cos (6:)
i=1
1 &
ka = E Z ITi:nI sin (9,) (2.15)
1=1
k=1,2,...,n.

Note that the angle § remains the same for both sets of linked vectors. However,
the magnitude of the linked vector for the sample data is a; whereas it is b; for the
null distribution. The angle 0; is solely dependent on the reference distribution while

the magnitudes |Y;.,| and |T}.,| are solely dependent on the sample data and null data

28




sets, respectively. In particular, for the 7** sample linked vector, a; is dependent on the
standardized ** order statistic of the sample data set whereas for the :** linked vector
of the null hypothesis, b; is dependent on the estimate of the expected value of the t*
standardized order statistic of the Monte Carlo simulation of the null distribution.

Although Y;., and Tim are ordered statistics from the smallest to the largest, note
that the magnitudes of Y., and T}.. are not. In fact, with increasing ¢, |Y;.,| and IT,,,I
would begin large, decrease to approximately zero and then increase again.

The i** sample and null linked vectors, respectively, are drawn by joining the points
(Qi, Qi-1) and (Qos, Qogi-1)) It should be noted that the @, and Qo given in equa-
tions (2.11) and (2.14) represent the terminal point, respectively, of the linked vectors
defined above. Fig. 2.1 shows the two sets of linked vectors obtained when both the
sample and null data sets are obtained from the the Gaussian distribution with n = 6
and n = 50. The solid curves in fig.2.1 show the linked vector for the sample distri-
bution while the dashed curves show the ideal linked vector for the null distribution.
When the length n, of the data set, is large (on the order of 50 points), then the
linked vector is a smooth arc, as seen in fig.2.1.

For a typical set of ordered data samples drawn from the null distribution, it is
reasonable to expect that the sample linked vectors would follow the null linked
vectors closely. If the ordered set of samples is not from the null distribution, then
the sample linked vectors are not expected to follow the path of the null linked vectors
closely. Hence, the procedure provides visual information about how well the ordered
set of data fit the null distribution. However this is not an ad hoc statistical procedure.
As shall be seen later on, we do construct test statistics to present a formal way of
performing the Goodness of Fit test to determine whether the data set is statistically

consistent with the null hypothesis.
2.3.1.1 Properties of the test statistic Qg,

An important property of the (o, statistic is that it is invariant under linear
transformation. In particular, we consider the standardization used in eq.(2.6). Let
S; = ¢X; + d where ¢ and d are constants. Let u, and o, denote the mean and

standard deviation of the samples, S;, respectively. Then, it is readily shown that

]X"a::“’ | = ]S‘;““ |. The invariance property follows as a consequence. The advantage of

s

this property is that the PDF of Qo, = (Uon, Von) for a given sample set and reference
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distribution depends only on the sample size n and is unaffected by the location and
scale parameters. The distributional properties of this statistic for testing normality
is studied by Ozturk and Dudewicz in [3].

The exact sampling distribution of Qy, is usually difficult to obtain. waever,
the empirical distribution of the test statistic Qo, was obtained via Monte Carlo
experimentation by Ozturk and Dudewicz in [3] . Using the means, variances and
coefficients of skewness and kurtosis of Uy, and V4, based on 50,000 samples for values
of n from 3 till 100, they found that the distributions of Uy, and V;, approach the
normal distribution even for moderate sample sizes. The distributional properties of
the statistic Qon = (Uon, Vo) for testing normality is studied by Ozturk and Dudewicz
in [3]. Some of the empirical results obtained by them for the statistic Qo, for standard

normal distribution for 3 < n < 100 are given below.

E(Uos) = 0 (2.16)
41
E(Vi,) = ﬂvzo.326601+0——§—9-gl
E(UopVon) = 0

0.02123  0.01765
~ +

Var(Up,) = o} > (2.17)
n n .
Var(Ven) = o2~ 0.04427 B 0.09251.
n n

Also, it was found empirically, for n > 10, that, U, and Vj, are approximately
bivariate normal.

An interesting property of this algorithm is that any one of the points Qok; k =
1,2,...,n, or aselected group of these points can be used as a test statistic to establish
a formal test. The algorithm in its present form proposes the general statistic Qoy as

the test statistic for testing the null hypothesis.
2.3.1.2 Basic Concept of the Confidence Contours

The algorithm provides quantitative information as to how consistent the sample
data set is with the null hypothesis distribution by the use of the confidence contours.
An example of these contours is shown in fig.2.1. If the end point of the sample data
linked vector curve falls within one or more of these contours, then the sample data

set is said to be statistically consistent with the null hypothesis at a confidence level
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based on the confidence contours. If the sample data set is truly consistent with the
null hypothesis, note that the sample linked vector is likely to closely follow the null
linked vector.

Now consider the linked vector for the null hypothesis which is based on the stan-
dardized expected values of the order statistic, Z, for 2,000 Monte Carlo simulations.
The test statistic Qon, found by computing the expected value of 2,000 end points
of the 2,000 linked vectors provided by the Monte Carlo simulation, is random. The
coordinates of Qgn, Us, and Vp,, may or may not be bivariate Gaussian.

When Uy, and Vg, are bivariate Gaussian, the confidence contours of the null hy-
pothesis are readily determined. A three dimensional bell shaped bivariate Gaussian
curve is fitted to the 2,000 end points arising from the Monte Carlo simulation. The
elliptical contours of this distribution are plotted for various parameters of the signif-
icance level a (eg. 0.01, 0.05, 0.1) where « is defined as the conditional probability
that Qo, falls outside the specified ellipse given that the data comes from the null
distribution. (1 — a) is called the confidence level and the corresponding contour is
called the 100 x (1 — «) percent confidence contour. Note that (1 — ) is the condi-
tional probability tha @y, falls inside the specified ellipse given that the data comes
from the null distribution. '

This could be done for any of the n points of the ordered statistic, Z, along the
null linked vector. Thus, more than one set of confidence contours could be created
if there are more than one test statistic. Then, if the sample data is truly consistent
with the null hypothesis, the sample data linked vector is likely to pass through a
series of confidence contours determined from the distributions of the test statistics.
However, it was found to be unnecessary to clutter up the graphics with so many
contours, as the human eye can readily detect whether or not the linked vectors are
closely following the same trajectory. The option of using more than one test statistic
is provided in the algorithm.

Note that the average value of the test statistic, Qon, of the null distribution is at the
center of the contours. Thus, the closer the end point of the sample data linked vector
1is to the center of the confidence contour, the more likely it is that the sample data is"
coming from the null hypothesis. As the significance level decreases, the confidence

level increases and the probabillity that Qo, will fall within the corresponding ellipse
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will also increase. This results in the fact that the size of the confidence contours
increase as the confidence level increases.

For a given sample size, n, the :** angle of any linked vector depends solely on
the reference distribution which remains unchanged throughout. Consequently, for a
given value of sample size, n, and for a given null hypothesis, values for the magnitude
and angle of the points (Uok, Vor) on the null linked vector, k = 1,2,...,n, may be
tabulated. This table, which is dependent on n and the null hypothesis, could be
stored and recalled when desired. This can significantly reduce the computational

requirements.
2.3.1.3 Determining Confidence Contours

As described earlier, the confidence contours are contours from the bivariate proba-
bility density function of the end point coordinates used to determine the test statistic
Qon. These 2,000 end points are obtained from the Monte Carlo simulation. Plotting
confidence contours is usually not easy when the joint distribution is not bivariate
normal. Further, in order to analytically determine the confidence contours, the joint
PDF of Uy, and Vp, must be known [4]. However, it is difficult to analytically deter-
mine this joint PDF. Consequently, a normality transformation is made on the end
point coordinates Uy, and Vp, to obtain statistics rgu = %1(Uos) and ro, = ’ll’z(‘/on)'
where t;(.) and ¥,(.) are functions operating on Up, and Vo, respectively. A family
of distributions called the Johnson System is used to perform the transformation on
U, and Vi, so as to obtain a bivdriate normal distribution.

The Johnson system of distributions is a flexible family of distributions having
four parameters. This system is used to summarize a set of data by means of a
mathematical function which will fit the data. The system proposed by Johnson
contains three families of distributions which are obtained by transformations of the

form

R=v+nfi(G;Ae€);i=1,2,3 (2.18)

where R is a standard normal variable and G is the random variable on which the

transformation is performed. 7,7, A, and € are four parameters of the Johnson system

of distributions. In particular, let




ROu = "N +771fi(U0n;Ala 6l)
RO'U = 72 + 772f1(‘/0n1 ’\2a 6'2) (2'19)
t = 1,2,3

where f; ; i = 1,2,3 represent the following three functions suggested by Johnson:

filg: A, €) = sinh™ (£ (2:20)
denotes the Sy distribution,
falgi A €) = ln<A’ff—§), e<g<etA (2.21)

denotes the Sg distribution, and

— €

falg; Ay e) = In(Z 3

denotes the S distribution.

), g>¢€ (2.22)

Note that fi(g;A,€),7 = 1,2,...,3, are single- valued monotonically increasing
functions for the allowed ranges of g. Sy, is, in essence, a three parameter distribution
since the parameter A can be eliminéted by letting v* = v — pln A so that r =
v*+nlIn(g—e¢). Spis a distribution bounded on (¢, e+ A) and the Sy is an unbounded
distribution. In a plot of the third and fourth order standardized moments where Vas
is plotted versus a4, the chosen functions .are such that the S; distributions form a
curve dividing the (/as, a4) plane in two regions. The Sg distributions lie in one of
the fegions and the Sy lie in the other.

In using this system of transformations, the first step is to determine which of
the three families should be used for performing the normality transformation. A
possible procedure is to compute the sample estimate of the standardized moments,
viz., the coefficients of skewness and kurtosis, and choose the distribution according to
which of the two regions contains the computed point. However, as described at the
beginning of the chapter, this method has major drawbacks. Consequently, another

procedure is used to determine the family of distributions to be used to perform the
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transformations. It is a simple selection rule which is a function of four percentiles
to select one of the three families and to give estimates of the parameters for all the
families. It was developed by Slifker J. and Shapiro S. in [4].

The idea of the selection rule is to try and find a property of the transformation
given in eq.(2.18) and use it to select an appropriate member of the Johnson family
to approximate a set of data. It was heuristically felt by Slifker J. and Shapiro S. that
there must be some relationship concerning the distances in the tails vs. distances
in the central portion of the distribution which could be used to distinguish between
the bounded and unbounded cases. This led to the following formalization.

Consider any one of the transformations described by eq.(2.18). Choose any fixed
value of r > 0 of a standard normal variate. Then the points £r and +3r divide a
horizontal axis into three intervals of equal length given by (—3r, —r),(—r,r),(r,3r).
Let gs,,gr,g—» and g_3, be the values corresponding to 3r.r,—r and —3r,under the

transformation given in eq.(2.18), respectively. Let

m = g3 — ¢gr
[ = g—r — g-3r (223)
P = G —g-r

Since fi(g; M, €),t = 1,2,...,3, are single-valued monotonically increasing functions

for the allowed ranges of g, it is readily seen that m,l and p are all greater than
0. For a bounded symmetrical Johnson distribution, it was hypothesized that the
distances m and [ between each of the outer and inner points would be smaller than
the distance p between the two inner points. The converse would be true for the

unbounded case. This led to the following more general result:

ES

(¢)

> 1 for any Sy distribution;

»”
(i) ’:—2’ <1 for any Sg distribution; (2.24)
(22) ’;—‘21 =1 for any S distribution.

These properties are proven in Appendix A and can be used to discriminate among
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the three families.
Selection Procedure

The selection procedure consists of the following steps:

1. Choose a fixed value of r > 0. This choice should be motivated
by the number of data points. In general, for moderate sized
data sets, a value of r less than 1 should be chosen [4]. Any
choice of r greater than 1 would make it difficult to estimate the
percentile of +3r. A typical choice is to use a value of r close to
0.5 such as 0.524. This would make 3r = 1.572 and these points
correspond to the 70** and the 94.2%* percentiles of the standard
normal distribution, respectively. However, the larger the number
of data points, the larger the value of  that can be selected. In

the Ozturk algorithm r is chosen to be 0.775449.

2. Determine from a table for the normal distribution the probability
P, = Pr(R < a), where a is taken to be either 3r,r, —r or —3r.
For example, if r = 0.5 then Fys = Pr(R < 0.5) = 0.6915.

3. Determine integer values of k, such that

ke —
n

eF

P, = (2.25)

where

ke = [nP, + %], (2.26)

[.] denotes the closest integer, and a = 3r,r, —r, —3r.

4. Obtain n observations of the random variable G, where G is re-
lated to the random variable R through eq.(2.18). Order these
observations from the smallest to the largest and denote the k"

ordered observation by g¢*.

5. Let

o =g" | (2.27)
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where a = 3r,r, —r, —3r. The connections between g,, k., and P,

are explained in Appendix B.

6. From the values of g, obtained in step 5, compute the distances

m, 1, and p according to eq.(2.23).

7. Use the criteria in eq.(2.24) to select the appropriate member of

the family of distributions.

Since the g'’s are continuous random variables, the probability is zero that (ml/p?) =
1 . Thus, choice of the Sy distribution requires that mi/p? fall within some small
prespecified tolerance interval around 1.

After completion of the selection process, the next step is to estimate the parameters
of the distribution selected. Estimation of the parameters is accomplished by using
the formulae given. These allow the estimates to be simply calculated by means of
a scientific hand calculator. The formulae for the estimates are given in terms of
the chosen values of r and the computed values of m,! and p. Derivations of these
formulae are provided in Appendix A.

Note that the following formulae express the parameter values as functions of m,!
and p which in turn are functions of gs,g,,9-» and g_3,. In practice, the corre-
sponding parameter estimates are computed based on the ordered sample values,
gFeya = 3r,r, —r, —3r.

(i) Johnson Sy Distribution

r =~ +nsinh™}(2 - 5 (2.28)

Parameter Estimates for Johnson Sy Distribution

n = — py ) (7’ > O)
cosh 1[;(;+ %)]
l_m
¥ o= 7 Sinh_l[é(m_pi—_q)l};]; (2.29)
PP
2p(2, - 1)Y/*
= m l m i ) (/\ > 0)
(5 +5 =G5+
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{ m
_ gty p(z— %)

2 22 4+4-2)
(it) Johnson Sg Distribution
g—¢
r=~v4+n ln(m)

Parameter Estimates for Johnson Sg Distribution

)

"= s Ea o 7Y
v = 77Sinh’1[(§_%){(12?%?(_11';?)—4}1/2].
\ =1ﬂﬂ+%ﬂg;?;ﬂr_¢n;w>o)

(1ii) Johnson Sy Distribution

r=7"+nln(g—e).

Parameter Estimates for Johnson Sy, Distribution

2r
m= In 2
p
v = pla[-E—]
p(%)Y
€ = 9r+g_r_£%+1
2 2%—1'

(2.30)

(2.31)

(2.32)

(2.33)

Note that the values of the parameters above are presented in such a way as to

emphasize their dependence on the ratios m/p and I/p for the Sy distribution and on

p/m and p/! for the Sp distribution . For the S, distribution, we see from eq.(2.24)

that (I/p) = (m/p)~'. Thus, the formulae for the Sy distribution parameters are

given solely in terms of the single ratio m/p.
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Resistor Interval | Observed Frequencies
(in k)
<9.25 -
9.25-9.75 1
9.75-10.25 7
10.25-10.75 18
10.75-11.25 36
11.25-11.75 70
11.75-12.25 115
12.25-12.75 199
12.75-13.25 437
13.25-13.75 929
13.75-14.25 1787
14.25-14.75 2294
14.75-15.25 2082
15.25-15.75 1129
15.75-16.25 275
16.25-16.75 55
16.75-17.25 6
>17.25 -
Total 9440

Table 2.1: Resistor Values

Ezample:

We consider a set of data representing the resistor values in a VLSI circuit. The
data and the observed frequencies are shown in table 2.3.1.3. We choose the value of
r to be 1. Thus, the four values assumed by a are +3, 1, -1 and -3. From the table
for the normal distribution, the probabilities, P, = Pr(R < a), for a = 3,1, -1, and
—3 are found to be 0.9986,0.8413,0.1587 and 0.0014, respectively.

First, consider a = 3, for which P; = 0.9986. The value of the order number ks is

given by

ks = [nPs + %] = [(9440)(0.9986) + 0.5] = 9427 (2.34)

where [.] denotes the closest integer value. If the raw data were available, we would.

simply let g3 equal to the 9427t ordered sample, ¢°4?". However, because the raw

data has been grouped into the intervals tabulated in table 2.3.1.3, the value of g®4*7

is unknown. Consequently, interpolation is used to estimate a value for ¢®4?".
Note that the 9427* ordered observation falls in the interval (16.25,16.75). The

probabilities that the resistor values are less than or equal to 16.25k€} and 16.75k(2,
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respectively, are given by

9440 — 6 — 55
Pr(G<16.25) = — %0 _,
r(G < 16.25) o 0.9935

9440 — 6
Pr(G<16.75) = ——— =0.9994. :
r(G < 16.75) Saa0 = 0-99% (2.35) .

Thus, by the method of interpolation,

16.75 —16.25  ¢%*7 —16.25
0.9994 — 0.9935 = 0.9986 — 0.9935

The value of ¢°#?" is found to be 16.25 + 0.439 = 16.689. Setting g3 equal to ¢%4?7, it

(2.36)

follows that g5 = 16.689. Values of ¢1,¢_1, and g_3 are found in a similiar manner.

In summary,

gs = 16.689
g1 = 15.242
g-1 = 13.581 (2.37)
g-3 = 10.409.
Consequently,
p = g1—g-1= 1661
[ = g-1—G-3 = 3.172
yielding
ml
— = 1.664. (2.39)
D
Since the value of ;’?} is found to be significantly greater than 1, it is decided from

eq.(2.24) that an Sy distribution is appropriate for transformation. The formulae

given in eq.(2.29) are used to obtain the parameter values. Thus,
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2(1)
= =2.333
T T cosh T[X(0.871 + 1.910)]
vy = 2.333sinh7![ 1.910 - 0.871 ] =1.402
2,/1.910(0.871) ~ 1

2(1.661),/(1.910)(0.871) — 1

A = 1.585 2.40
(0.871 + 1.910 — 2)4/0.871 + 1.910 + 2 (2.40)

15.242 +13.581  1.661(1.910 — 0.871)

= = 15.516.
¢ 2 2(1.910 + 0.871 — 2) 5
The transformation equation, therefore, becomes
—15.516
= 1.402 + 2.333sinh ™! (L——222 2.

r 02 4 2.333sinh™"( 585 ) (2.41)

where r is a standard normal variable and g is a random variable corresponding to
the resistors values.

Once the transformation equations have been obtained for the end point coordinates
Usr and Vo, they are applied to the end point data arising from the 2,000 Monte
Carlo simulations to generate the standard bivariate normal random variables Ro.,
and Ry, respectively. If a type j transformation, j = 1,2, 3, is used, the original data
is said to have a Johnson type j distribution. In practice, Uy, and Vj, need not have
the same distributions (i.e., Uy, may be of type i whereas V;, may be of type j and

¢ # j). An estimate of the correlation coefficient between Rg, and Ry, is given by

A 1 (Rﬂu' _ ﬁ"'Ou)(RO‘Ui — ﬁrou)
5= Toss g[ ] (2.42)

Gr0uOro
where f,,, fir,, and &,,,, 6., are the sample means and variances of the 2,000
transformed statistics Ry, and Ry, respectively.
Since Ry, and Ry, are bivariate standard normal random variables, their joint PDF
can be written as
1 t

JRouRoo(Tou, T0u) = mexp(—g) (2.43)

where
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1
i = i—_ﬁ(rg“ + ’I'gv - QﬁTOuTOU). (244)
Let t = ty. Then the equation
1
to = m(?‘gu + T'(Z)u - 2p7’0u7'0u) (2.45)

is that of an ellipse in the rg,, 7o, plane for which

1 to
fRo,,,RO,, (7'01” 7"Ov) = me eXp(—'é‘) (246)

Points that fall within the ellipse correspond to those points in the ro,, o, plane for

which

1 to
fRouwRoy (Tous Tov) > I exp(—7)- (2.47)

Let a be defined as the probability that ro, and ro, fall outside the ellipse given that
the data comes from the null hypothesis. It follows that ‘

a= Pr(T > to). (2.48)

Note that the bivariate normal distribution is a special case of the spherically

invariant random vector (SIRV) where the characteristic PDF is given by [11].

fs(s) =6(s—1). T (2.49)

The PDF of an N-dimensional SIRV involves the same quadratic form ¢ that arises

in the N-dimensional multivariate Gaussian PDF. For an SIRV, Rangaswamy [11]
shows that the PDF of ¢ is

1 N_4 ) 0o
=2¥I‘(%)t hn(t); (0S¢ < o) | (2.50)

fr(t)

where hy(t) is a monotonically decreasing function given by

hn(t) = /Ooo sV exp —.igfs(s)ds. (2.51)

Substituting eqn.(2.49) into eq.(2.51), there results
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hn(t) = /0°°3-Nexp(—-22—)5(s—1)ds (2.52)

- ot

For the bivariate case, N = 2. Consequently, eq.(2.50) reduces to

t
exp(—i); 0<t< oo (2.53)

DO =

fr(t) =

Hence,

()

]

a=Pr‘(T>lf0)=foo

to

lexp(—%)dt = exp(~2). (2.54)

Consequently, to = —2In(a). Thus eq.(2.45) becomes

1
'1—_-72'(7'3,‘ + 7‘3,, — 2prouToy) = —21In(a). (2.55)

The contour equation

rgu — 2proyToy + r?,u =-2(1 - ﬁz) In(a), (2.56) -

which is the equation of an ellipse, is used to determine the 100 x (1 — @)% confidence
contour. This is also shown in [15] and [16]. When the statistics Ro, and Ry, are

uncorrelated, the correlation coefficient is 0 and eq.(2.56) becomes

ré. +ri, = —2In(a), (2.57)

which is the equation of a circle. Also, eq.(2.56) degenerates into a line as the corre-
lation coefficient approaches +1.

In the Ozturk Algorithm, an inverse Johnson Transformation is applied to the points
for the confidence ellipses. The locus of the resulting points obtained is then plotted
to obtain the corresponding confidence contours in the U — V plane. Consequently,
these confidence contours are not necessarily ellipsoidal.

The confidence contours are plotted for a given sample size n. These are then used

to make a visual as well as computational test of the null hypothesis. If the terminal
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point, Qy, of the sample data, falls inside the contour, the data is declared as being
consistent with the null hypothesis with confidence level (1 — ). Otherwise the null
hypothesis is rejected with a significance level . Fig.2.2 shows the linked vectors
and the confidence contours when the null distribution is standard normal and the
sample data size is 100. From the figure it is seen that the sample data is statistically
consistent with the null hypothesis at confidence level of 90%. Fig.2.3 shows a case
where the sample data is not consistent with the null hypothesis at'a siginificance

level of 1%.
2.3.2 Distribution Approximation

The distribution approzimation procedure is simply an extension of the Goodness
of Fit test. Following a similiar approach to that outlined in the section for the Good-
ness of Fit test, random samples are generated from a library of different univariate
probability distributions. In the Goodness of Fit test, the statistic Qon = (Uon, Von)
given by eq.(2.15) was obtained for the null hypothesis and for a specified n. For the
distribution approximation we go one step further and for each distribution taken
from a library of distributions, we obtain the end point statistic Q, from eq.(2.12)
for a given n and for various choices of the shape parameter. Thus, depending on
whether it has a shape parameter or not, each distribution is represented by a point
or a trajectory in a two dimensional plane whose coordinates are U, and V,,. Fig. 2.4
shows an example of such a representation. The distributions which are plotted on the
distribution approximation chart are (1) Gaussian, (2) Uniform, (3) Exponential, (4)
Laplace, (5) Logistic, (6) Caiuchy, (7) Extreme Value, (8) Gumbel type-2, (9) Gamma,
(10) Pareto, (11) Weibull, (12) Lognormal, (13) Student-T, (14) K-distributed, (15)
Beta, and (16) Su-Johnson. Tables 2.2 and 2.3 give the standard and the general
form respectively, of these distributions.

vspace*8in

vspace*8in

As mentioned before, the points on the linked vectors for various distributions are
computed using eq.(2.12). The magnitudé for each point on the linked vectors is
computed from values averaged over 2,000 Monte Carlo simulations of the ordered
statistic, Yim, obtained from eq.(2.6) while the angles are computed from the reference

distribution (standard Gaussian). The confidence ellipses are computed only for the

44




Goodness of Fit Chart

0.35
0.3
0.25
0.2
0.15
0.1

0.05

Figure 2.2: The Confidence Contours and the linked vectors with standard normal as null.
Dotted Line = Null Distribution Pattern, Dashed Line = Sample Distribution Pattern.
90, 95, 99% contours from the innermost to the outermost respectively.
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Goodness of Fit Chart

0.35
03H
0.25

0.2
0.15

0.1

0.05 R .................. ................. ....... y ............ ." .......... -

. -

P

s

.- -
et P L ]

............

-----

Figure 2.3: The Sample Data is not consistent with the null hypothesis. Dotted line =
Null Distribution Pattern, Dashed Line = Sample Distribution Pattern.
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Distribution Standard Form fy(y)
Gaussian (V27 8)-1 exp(—”.;) —0<y< oo
Uniform 1 O<yx1

Exponential exp(—y) 0<y<oo
Laplace 0.5exp(—-|y]) —o0o<y<oo
Logistic exp(~y)[1 + exp(—y)]™¢ —oco<y<oo
Cauchy 1r(1+y7) —oo<y< oo

Extreme Value (Type 1)

exp(—y)exp[—exp(-y)] —oo<y< oo

Gumbel (Type 2)

yyexp(—y — exp(-y™?) oco<y< o

Gamma F(.—‘o()-exp(—y)y""1 a<y<oo
Pareto =7 y>1,7>0
Weibull 7y"'1 exp(—y?) y>0
Lognormal qw exp[— Mﬂ}—] y>0
K-Distribution 1 I,(_”(12) [\.,_;y1 y>0
Beta B(_me"‘l (1-—2y) <yl
!sinh_ gl-—v
Johnson-SU il S st S o<y <oo

V2rby/1+y?

Table 2.2: Standard Forms of the PDF’s used in the Approximation Chart

Distribution General Form fx(z)
Gaussian (V278)~ ! exp(— (’7—(})— —00< <00
Uniform 5 a<z<a+f

Exponential %exp(—“" Eo2) a<z< oo
Laplace 0,'35 exp[—|(’ 2] —co<z< oo
Logistic  exp[— 521 + exp(— = )7 —co<z < oo
Cauchy '————(I—_—T_r- —o <z <o

B[4 52 ,5:' ]

Extreme Value (Type 1)

% exp[— =5 exp[— exp{—-(’”—;ﬂ}] -0 <z <00

Gumbe] (Type 2) %(r‘a) exp( v — 1)exp[— (:C—"Q——l] —00< T <00
Gamma T exp[—(r 0’)](’ 2)7-1 o<z < o0
Pareto ﬁ(—,_a—);-; :c>a+ﬂ,7>0
Weibull (552" exp[—(32)] z>a

Lognormal \/WBZ‘ 5 exp[— {ﬂog(“a)}z] z>a

K-Distribution

pr(-y)[ 2Ky [552] 2>«

Beta ﬁB(’Y&)(I—a) —1[ (.E a)]6 I a<z<otl
slnh-l ) 7)2
Johnson-SU exp( '—'Luz o< T <00

1
B amsy[1+(E52 )

Table 2.3: General Forms of the PDF’s used in the Approximation Chart
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null hypothesis used in the prior Goodness of Fit test. Only the end point coordinates
@, of the linked vectors are provided in the approximation chart. This is due to the
fact that the plot would become too cluttered to properly interpret the data if all
the linked vectors for these various distributions were provided in the graphics. Also,
meaningful information from the linked vectors is contained in the location of their
end points. Therefore, only the end points of all the linked vectors are provided
in the approximation chart, along with the confidence ellipses for the selected null
distribution.

For each distribution, such as Gaussian, that is uniquely specified by its mean and
variance (no shape parameters), there exists a single end point on the approximation
chart corresponding to the single unique linked vector.

For distributions dependent on a single shape parameter, such as Weibull, the end
point of the of the linked vector will also be dependent on the shape parameter.
Therefore, a sequence of linked vectors must be computed in order to obtain the
trajectory on which the end point travels for varying shape parameter. In a sense, the
trajectory represents a family of PDFs having the same distribution but with different
shape parameter values. For example, the trajectory for the Weibull distribution is
obtained by joining the end points for which the shape parameters are 0.3, 0.4, 0.3,
0.6, 0.8, 1.1, 1.5, 2.0, 3.0, 5.0. As the shape parameter increases, note that the
Weibull distribution approaches the Gaussian distribution. This is shown in fig. 2.4.
The representation of fig. 2.4 is called an approximation chart.

Similiarly, for a distribution dependent on two shape parameters, such as Beta, a
sequence of linked vectors must be computed in order to plot the trajectories on which
the end point travels for varying shape parameters. This is performed by holding the
first shape parameter constant and varying the second shape parameter to generate
a trajectory, then changing the first shape parameter and again holding it constant
while varying the second shape parameter, etc... until a family of trajectories is
produced that characterizes the distribution.

Thus, an approximation chart such as that in fig. 2.4 can be produced. It is
apparent that this approximation chart provides a one to one graphical representation
for each PDF for a given n. Therefore, every point in the approximation chart

correponds to a specific distribution. Thus, if the null hypothesis in the Goodness of
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Distribution Approximation Chart

0.5
0.45
0.4
0;35

0.3

Figure 2.4: The Approximation Chart. 1) N = Normal, 2) U = Uniform, 3) C = Cauchy,
4) L = Lognormal, 5) S = Logistic, 6) A = Laplace, 7) V = Extreme Value, 8) T = T2-
Gumbel, 9) G = Gamma, 10) E = -ve Exponential, 11} P = Pareto, 12) K = K-Distributed,
13) W = Weibull, 14) B = Beta, 15) SU = SU-Johnson.
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Fit test is rejected, then the distribution which approximates the underlying PDF of
the set of random data can be obtained by comparing (), obtained for the samples
with the existing trajectories in the chart. The end point or trajectory closest to
the @), of the sample data is chosen as an approximation to the PDF underlying the
random data. This closest point or trajectory is determined by projecting the sample
point @), to neighbouring points or trajectories on the chart and selecting that point
or trajectory whose perpendicular distance from the sample point is the smallest. For
example consider the situation of fig. 2.5. Let @), = (un,v,) denote the coordinates of
the sample point. Let (z1,y1) and (z2,y,) denote the coordinates of the points A and
B on the trajectory shown in fig. 2.5. The segment of the trajectory between points
A and B is assumed to be linear. Let (zo,yo) denote the coordinates of the point of
intersection of the straight line between A and B and the projection of @, = (un,vn)
onto this straight line. The equation of theAstraight line between the points A and B

can be written as

y —y1 =m(z —z1) (2.58).

where m = Z=%- and (z,y) is a point on the line. Also, the equation of the straight

line joining (zo, yo) and (u,,v,) is

Y—Un= —%(:L’ - un) (259)

where (z,y) is a point on the perpendicular. The coordinates (zo,yo) result from

letting £ = z¢ and y = yo in eqgs.(2.58) and (2.59). Their solution yields

1
T = [m® — my; + un + muy)
m? 4+ 1
1
Yo = 1[y1 — mzy + mav, + Muy,). (2.60)

Finally, the perpendicular distance from the sample point onto the trajectory between

points A and B is

1
D= \/m2 n 1[m21/;f — 2my1tpy + 93] (2.61)
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where

d)l = Up — Ty,

Y2 = vn— Y1 (2.62)
The complete distribution approximation algorithm is summarized as follows.

1. Sort the samples X;, X,,..., X, in increasing order.
2. Obtain the standardized order statistic Y;.,.

3. Compute U, and V,, from eq.(2.12) for the library of PDFs men-

tioned.

4. Obtain an approximation chart based on the sample size n and

plot the sample point @), on this chart.

5. Compute the distance, D between the sample point (), and each
of the end points on the chart. Choose the PDF corresponding to
the point or trajectory that results in the smallest value for D as

an approximation to the PDF of the samples.

The approximation to the underlying PDF of the set of random data can be im-
proved by including as many distributions as possible in the approximation chart so-
as to fill as much of the space as possible with candidate distributions. It is empha-
sized, however, that this procedure does not identify the underlying PDF. It merely
gives the best approximation to the distribution underlying the PDF of the data from

those available in the chart.
2.3.3 Parameter Estimation

Once the probability distribution of the samples is approximated. the next step is
to estimate its parameters. The method of distribution approximation discussed in
2.3.2 lends itself for estimating the parameters of the approximated distribution. We
present the estimation procedure for the location, scale and shape parameters in this

section.
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Figure 2.5: Distance Computation
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2.3.3.1 Estimation of Location and Scale Parameters

Let f(z : a,f) denote a known distribution which approximates the PDF of the
set of random data, where a and 4 are the location parameter and scale parameter,.
respectively, of the approximating PDF. Let X;., denote the ordered statistics of X

from a sample of size n. Let 5., be defined by

Xin —
Sin = ———. 2.63
; (263)
Also, let
Hin = E[Si:n]- (264)
Then
E[)‘,i:n] = ﬂﬂi:n + «. (265)

We consider the following statistics

n

7N = Zcos(@,-)Xim
i=1

T2 = Zsin(&i)Xﬁn (266)

where 0; is the angle defined in eq.(2.10). The expected values of T} and T, are

EIT) = 3 cos(0)]pin + of
BIT) = 3 sin(00)Bpin + o] (2.67)

These can be written as

ETh] = aa+b8
E[T3] = ca+dp (2.68)
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where

c = Y sin(6)) (2.69)

Because the standardized Gaussian distribution is used as the reference distribution

for 0;, it can be shown that a = 0 [1]. The estimates for § and « are then given by

» _  ET]
Tt
& = -b:[—@—]é-_—‘ﬁ. (2.70)

For sufficiently large n (i.e., n > 50), suitable estimates for E[T1] and E[T?] are

E/[T'l] ~ T1
ET) ~ T (2.71)

Estimates for b and d rely upon an estimate of g;.,. fii:n is obtained from a Monte Carlo
simulation of S;., where S;.,, is generated from the known approximating distribution
f(z;0,1) having zero location and unity scale parameters. fiin 1s the sample mean of
S;.. based upon 2,000 Monte Carlo trials. H'awing flim, the estimates for b and d are
given by

b = zn:ﬂ,-m cos(6;)

=1

.,
i

Z ﬂ,‘m sin(0,~). (272)
i=1
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The scale and location parameters are then estimated by application of egs.(2.70) and

(2.71).
2.3.3.2 Shape Parameter Estimation

In this section we present the approximate method used for estimating the shape
parameter of the approximating PDF. We first consider distributions with only one
shape parameter. Let v denote the shape parameter of the approximating PDF. Since
U, and V, are location and scale invariant, the point @), depends only on the sample
size n and the shape parameter ~.

Recall that a point on the trajectories of the approximation chart is obtained by
averaging for a specified value of the shape parameter the results from a large number
of trials for U, and V,,. Consequently, for given values of n and v the coordinates.
of the corresponding point along the trajectory for a specified distribution can be

characterized by

EU,) = ¢é1(n7)
E(Va) = 2(n,7) (2.73)

where the complete trajectory is obtained by repeating the large number of trials
for U, and V, over a suitable range of 4. On a given trial involving the random
data it is likely that the coordinates U, and V,, obtained for the samples will not
coincide with any of the trajectories on the chart. The PDF underlying the random
data is approximated by selecting the distribution corresponding to the point in the
trajectory that falls closest to the sample point (),. The situation is illustrated in
fig. 2.6. Q. appears in the figure with coordinates (U,,V,). The straight line 7,
denotes an approximation to a segment of the nearest trajectory which, in general, is
a curved segment between points A and B. A is that point on the actual trajectory
corresponding to the shape parameter v4. Its coordinates are (ua,v4). Similiarly, B
is the point on the actual trajectory corresponding to the shape parameter vyg. Its
coordinates are (up,vg). The slope of the straight line between points A and B is

UB — V4
m=—————

(2.74)

uB——uA'




Figure 2.6: Shape Parameter Estimation
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The equation for the straight line T T

v=v4+m(u—uy). (2.75)

Point C, with coordinates (u.,v.), is the perpendicular projection of @), onto T.. The

straight line linking @), and C has a slope equal to —% and an equation of the form

1
v =V~ —(u=Uh). (2.76)

Since C is a point common to both straight lines, it follows from eqs.(2.75) and (2.76)
that

1 .
va +muc —us) = Vo — —(uc — ). (2.77)

m

Solution for uc results in

m(V, —va) + mug + U,
m2+1 '

U =

(2.78)

Let v¢ denote the shape parameter corresponding to the point on the actual trajectory
closest to . An approximation to 4¢ is then obtained by linear interpolation on

Tr. The result is

(7B — 74)(uc — ua)
(up — ua) ’

Yo =7va+ (2.79)

The accuracy of the procedure can be improved by emploving a non-linear interpo-
lation method. It must be emphasized that the location, scale and shape parameter
estimation procedures presented in this section are approximate procedures.

The proposed estimation procedure can also be extended to the two -shape param-
eter case. In this case one needs to choose at least three points (u1,v1), (u2,v2) and
(us,v3) and let the shape parameter values corresponding to these three points be
7,72 and 73, respectively. The points are chosen in such a way that they form the
three vertices of a triangle inside which falls the sample point @, [1]. Again, by using
a linear interpolation in the plane, an approximate solution can be obtained for the

parameter estimates.
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Chapter 3

Simulation Results of the Ozturk
Algorithm

For univariate cases, the power of the Ozturk Algorithm has been studied for various
distributions in {1}, [2] and [3]. It was noted in [1] through [3] that the power of the
algorithm depends on the sample size n, type of the standardized statistic and the
null distribution. This algorithm has been found to compare favorably against all the
well known tests. Also, the algorithm has been put to use to test its performance
against different known distributions. Random data were generated using computer
simulations as given in [18] and [19]. The Goodness of Fit test as well as the Dis-
tribution Approximation test was performed on these data using this Algorithm. In
this chapter, a brief summary of some of the results obtained is presented.

Data was generated from four different null distributions, viz.,

¢ Univariate Gaussian
e Weibull (Shape Parameter 1)
¢ Gamma (Shape Parameter 1)

e Lognormal (Shape Parameter 1).

The Goodness of Fit test results are tabulated and presented first. The results of
the Distribution Approximation are not easy to tabulate. We shall, therefore, present

the result of a single case for the purpose of illustration.
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3.1 Goodness of Fit Test Results

3.1.1 The Univariate Gaussian Case:
Data was generated from a Gaussian pseudo random number generator using com-
puter simulations. The data set represented a zero mean and unit variance normal

PDF. The following observations were noted.

e It was observed that a sample size of less than 40 is not advisable
for the Goodness of Fit test as it almost always shows that the
data is statistically consistent with any null. This is due to the

fact that such a small sample size could be used to represent any

PDF.

¢ A sample size between 75 and 100 is found to be good enough to

accurately perform the Goodness of Fit test.

e For a sample size greater than 75 and when the null specified was
Gaussian, the Goodness of Fit test showed that the data was sta-
tistically consistent with the null in almost all the cases . For other
null hypotheses which are not close to Gaussian in the approxima-
tion chart, the Goodness of Fit test always showed that the data
was statistically inconsistent with the nulls. But for null hypothe-
ses which are close to Gaussian in the approximation chart, such
as logistic. the Goodness of Fit test comes up with statistical con-
sistency almost always. This vindicates the fact that the logistic

PDF curve is very similiar to the Gaussian PDF curve.

Table 3.1 shows the results obtained for this case.
3.1.2 The Weibull Case:

Data was generated from the Weibull PDF with shape parameter 1 and the Good-

ness of Fit test was performed on it. The following observations were noted.

o The Goodness of Fit test worked well for a sample size between
75 and 100. For a smaller sample size, the Goodness of Fit test is

not advisable since the results obtained were not accurate.
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Sample Size | Data Generated Null No. of Cases of SC/
(n) From Distribution { Total No.of Cases
5 Gaussian Gaussian 3/3
25 3/3
40 4/7
50 4/7
75 77
100 7/8
125 8/8
150 8/8
25 Uniform 2/5
40 2/5
50 1/5
75 /5
100 0/5
150 0/5
75 Exponential 0/8
100 0/8
150 0/8
75 Laplace 4/8
100 2/8
150 1/8
75 Logistic 7/8
100 7/8

Table 3.1: Results of the Ozturk Algorithm when the data generated was Gaussian. SC
indicates Statistical Consistency
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Sample Size | Data Generated Null No. of Cases of SC/
(n) From Distribution Total No.of Cases
5 Weibull (Sh.1) | Weibull (Sh.1) 7/8
25 7/9
40 4/8
50 5/8
75 6/8
100 8/8
150 8/8
5 Weibull (Sh.1) | Weibull (Sh.2) 7/8
25 3/8
40 2/8
50 0/8
75 0/9
100 0/8
150 0/8

Table 3.2: Ozturk Algorithm Results when data generated was Weibull with Shape Pa-
rameter 1. SC indicates Statistical Consistency and Sh. indicates Shape Parameter.

o When the null specified was Weibull with shape parameter 2, the
Goodness of Fit test showed that the data was statistically incon-
sistent with the null for a sample size greater than 75 in all the
cases. This is due to the fact that Weibull (Shape Parameter 1) is

far away from Weibull (Shape Parameter 2) on the approximation

chart.

Table 3.2 shows the results obtained for this case.
3.1.3 The Gamma Case:

Data was generated from the Gamma PDF with shape parameter 1 and the Good-
ness of Fit test was performed on it. Observations noted were almost the same as
those for the Weibull case. Again a sample size between 75 and 100 was observed to

have performed well in this case. The results for this case are tabulated in table 3.3.

3.1.4 The Lognormal Case:

A Lognormal pseudo random number generator was used to generate random data

representing the Lognormal PDF with a shape parameter of 1. Observations noted

for the Goodness of Fit test performance on this data were noted.

e A sample size between 50 and 75 was found to be sufficient to

perform the Goodness of Fit test accurately.
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Sample Size | Data Generated Null No. of Cases of SC/
(n) From Distribution Total No.of Cases
40 Gamma (Sh.1) | Gamma (Sh.1) 5/7
50 7/8
75 779
100 7/8
150 8/8
50 Gamma (Sh.1) | Gamma (Sh.5) 1/8
75 0/8
100 1/8

Table 3.3: Ozturk Algorithm Results when data generated was Gamma with Shape Pa-

rameter 1. SC indicates Statistical Consistency and Sh. indicates Shape Parameter.

Sample Size | Data Generated Null No. of Cases of SC/
(n) From Distribution Total No.of Cases
40 Lognormal (Sh.1) | Lognormal (Sh.1) 5/8
50 7/8
75 8/8
100 8/8
150 8/8
40 Lognormal (Sh.1) | Lognormal (Sh.0.5) 0/9
50 0/8
75 0/8
100 0/8

Table 3.4: Ozturk Algorithm Results when data generated was Lognormal with Shape
Parameter 1. SC indicates Statistical Consistency and Sh. indicates Shape Parameter.

o This sample size gave very good results as far as the distribution
approximation was concerned. About 30 times out of 40 the Log-

normal PDF showed up in the five closest distributions that could

be approximated.

Table 3.4 shows the results of the Goodness of Fit test for this case.

In general, the Goodness of Fit test seemed to perform well for a sample size of 100.
The confidence contours grow smaller when the sample size is increased. In effect, we

could hypothesize that for an infinite sample size the contours would become a point

in the two dimensional (U, V') plane. This is intuitively satisfying.
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Distribution No. Distance Rank
21 0.23728E-07 1
22 0.89802E-05 2
20 0.23473E-04 3
23 0.28047E-04 4
5 0.47542E-04 5

Table 3.5: Five closest PDF’s given by distribution approximation test for a standard
Gaussian data set

Distribution No. | Location Scale Shape (1) | Shape (2)
Parameter | Parameter | Parameter | Parameter

21 -0.23435 1.9774 2.4099 -0.2

22 -0.14976 1.9392 2.3697 -0.1

20 -0.39697 1.9747 2.4310 -0.4

23 -0.058871 1.9437 2.3717 0.0

5 -0.06215 0.49795 0.0 0.0

Table 3.6: Estimates of the Parameters of the five closest distributions chosen by the
distribution approximation test for a standard Gaussian data

3.2 Distribution Approximation Test Results

The distribution approximation test was performed for a number of cases. In fact,
it was performed for all the cases in which the Goodness of Fit test was performed.
As mentioned previously, since it is not very easy to tabulate the results of the
distribution approximation test for all these cases, results for a single test case are
presented below.

Data was generated from standard Gaussian distribution using a Gaussian random
number generator. A single test case consisting of 100 data points was considered.
Using standard Gaussian as the null distribution, the distribution approximation test
was performed on the data set. The first results of this test gave the five closest
PDF’s that the data could approximate. This result is shown in table 3.5
Distributions 20, 21, 22 and 23 are all SU-Johnson distributions with different shape
parameters, where as distribution number 5 is logistic distribution. Note that the-
standard Gaussian was the 11th ranked PDF with a distance of 0.47879E-03. Es-
timates of the location, scale and the shape parameters given by the distribution
approximation test for these distributions are given in table 3.6.

The approximation chart for this test case is shown in fig. 3.1. It is obvious
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Distribution Approximation Chart

Figure 3.1: Approximation Chart for a standard Gaussian data set. 1) N = Normal, 2)
U = Uniform, 3) C = Cauchy, 4) L = Lognormal, 5) S = Logistic, 6) A = Laplace, 7) V
= Extreme Value, 8) T = T2-Gumbel, 9) G = Gamma, 10) E = -ve Exponential, 11) P=
Pareto, 12) K = K-Distributed, 13) W = Weibull, 14) B = Beta, 15) SU = SU-Johnson.
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from the approximation chart that the PDF’s identified for this case are very close
to the Gaussian PDF. It is therefore concluded that even though this data set has
passed the Goodness of Fit test with standard Gaussian as the null, they could also
be approximated by the set of 5 PDF’s identified in table 3.5. In fact these are
‘better approximations than standard Gaussian. This is shown by histogram plots
shown in figures 3.2, 3.3 and 3.4. In these plots the histogram of the data is plotted
along with the null hypothesis, which is the standard Gaussian, and one of the five
distributions, given by the distribution approximation test, on the same coordinate
axes. As is obvious from the figures there is very little to choose amongst the five

PDF’s approximated.
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Figure 3.2: Histogram Plot: 1)Histogram plotted for the data, 2)Dotted curve is the
standard Gaussian, 3)Dashed curve is PDF no. 21 for the top plot and PDF no 22 for the
bottom plot. Parameters of the PDFs 21 and 22 are given in table
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Figure 3.3: Histogram Plot: 1)Histogram plotted for the data, 2)Dotted curve is the
standard Gaussian, 3)Dashed curve is PDF no. 20 for the top plot and PDF no 23 for the
bottom plot. Parameters of the PDFs 20 and 23 are given in table
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Figure 3.4: Histogram Plot: 1)Histogram plotted for the data, 2)Dotted curve is the
standard Gaussian, 3)Dashed curve is PDF no. 5. Parameters of PDF 5 are given in table
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Chapter 4

Conclusions and Suggestions for
Future Work

4.1 Conclusions

This thesis has discussed various techniques for analyzing random data. Two areas
were considered. The first area dealt with Goodness of Fit tests to determine whether
or not a set of random data is statistically consistent with a prespecified probability
distribution. After reviewing the Kolmogorov-Smirnov test, Chi-Square test, Q-Q
Plots and P-P Plots, a new test, called the Ozturk Algorithm, was introduced. This
test has an easily understood graphical presentation and works well for sample sizes
as small as 100. The second area dealt with approximation of the underlying PDF of
random data. Although the other tests were not applicable to this second area, the
Goodness of Fit test of the Ozturk Algorithm was shown to lend itself to generation of
a distribution approximation chart from which approximations to the underlying PDF
of the random data can be obtained. Again, good results were observed for sample
sizes as small as 100. An analysis was provided for generating confidence contours
when the random data was non Gaussian. Simulated data was used to evaluate

performance of the Ozturk Algorithm and some of the results were presented.

4.2 Suggestions for Future Work

Several problems remain to be explored with the Ozturk Algorithm:

1. The Ozturk Algorithm works well for continuous probability den-

sity functions. Generalizations of the Ozturk Algorithm to the
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discrete case should be explored.

. Extension of the Ozturk Algorithm from univariate to multivariate
PDF’s should be considered. One possibility involves utilization

of quadratic forms of the data [7], [11].

. Rangaswamy [11] demonstrated that multivariate spherically in-
variant random processes (SIRP’s) can be approximated by means
of their quadratic forms. However, a probability distribution ap-
proximation chart for SIRP’s that could be utilized by the Ozturk

Algorithm remains to be generated.

. The univariate PDF’s currently included in the approximation
chart are unimodal. Extension to multimodal PDF’s should be

explored.

. When the number of data points is much greater than 100, the
Ozturk Algorithm requires considerable time to process the data.
Ways should be examined for making the algorithm more efficient.
This includes parallelization of the algorithm as well as processing

the data in groups of 100 and averaging the results.

. Reduction of the Ozturk Algorithm to chip form should be inves-

tigated for real-time applications.




Appendix A

Algebraic Derivations for Johnson

Distributions

In this appendix, the criteria given in eq.(2.25) of chapter 2 are established and the

parameter estimates given in equations (2.30), (2.32) and (2.34) are developed.

A.1 Johnson Sy Distributions

The transformation for the Johnson Sy Distribution is of the form

— €
/\

where R is a standard normal variable and € is a location parameter, A is a scale

R = ‘y+nsinh_1(G

) (A.1)

parameter, and v and 7 are shape parameters for the PDF of the Sy Distribution.

Solving eq.(A.1) for G in terms of R, there results

R—~ — R

n

where we have made use of the fact that sinh(A) is an odd function of A. Define

G = e+ Asinh( ):e—/\sinh(7

) (A.2)

m = g3 — gr
l=g_, —gr (A.3)
P=9Gr —G-r

where g4,,g+3r are obtained from eq.(A.2) for +r and +3r, respectively.
A.2) and(A.3) give

For a fixed positive value of r, egs.(
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~—3r

)]

m = /\[sinh(7 — T) — sinh(
n

n
= /\[sinh(m)—sinh(v_:;#)],
| = ,\[sinh(7:3r)—sinh(7+r)]
- /\[sinh(ﬁ—?i-*-—r)—sinh(&?;t)],
p = A[sinh(7+r)-sinh(7;’")].

Using the standard formula

sinh(A + B) — sinh(A — B) = 2 cosh Asinh B,

we obtain the values of m,[ and p from eq.(A.4) as

-9
m = 2/\cosh(7 J)sinh(

.
n 77)
| = 2)\cosh(7+2r)sinh(1-)
n n
p = 2Ac0sh(l)sinh(£).
n n
Thus,
—2r
mo_ »cosh(ln——)
P cosh(2)
[ cosh(%?l)
P cosh(})

which gives

ml cosh(j-';f—r) cosh(l'-%?l)

p? cosh?( 1)

Using the identity
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cosh(A + B) cosh(A — B) = cosh® A + cosh? B — 1, (A.9)

we obtain from eq.(A.8)

ml cosh2(%) + coshz(%) -1

p? coshz(%)
cosh?(%£) — 1
= 1+ —"2 A.10
+ coshz(%) ( )
Since coshz(?—n’—) > 1, it is clear that %I- > 1 for the Sy distributien.
Applying the identity,
cosh(A 4+ B) + cosh(A — B) = 2cosh A cosh B, (A.11)
to the sum of m/p and I/p in eq.(A.T), we get
m 1 _ 2cosh(%) cosh(r‘;—r)
p P cosh(%)
= 2cosh(-2—£). (A.12)
n
Solving eq.(A.12) for n, we get
2r
n = T n > 0. (A.13)

- m {
cosh 1[2(; + 5]
Since n > 0 is assumed, the positive value of the inverse of cosh(.) must be chosen.

The expression for cosh(2r/n) in eq.(A.12) can be substituted in eq.(A.10) to give

md coshZ(%) + (22 1

_ 2p A.14
p? cosh2(%) ( )
Solving for cosh®(v/7),
27, (m+1)?—4p? A
1 _ 15
cosh (77) 4(ml — p?) ( )

Since cosh?(A) — sinh?(A4) = 1, eq.(A.15) leads to
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smh2(7) 4521__13)2) (A.16)
Thus,
sinh(l) = _[(_m_:lm (A.17)

n’ 2(ml—p?)/?
Unlike n, the parameter 4 may be either positive or negative. Thus, a determination
of the sign of the numerator in eq.(A.17) must be made. Taking the difference of {/p
and m/p in eq.(A.7) and applying the hyperbolic identity,

cosh(A + B) — cosh(A — B) = 2sinh Asinh B, (A.18)
yields

[—m _ 2sinh(2)sinh(%) (A.19)
p cosh(2) ' '

Both cosh(4/n) > 0 and sinh(2r/n) > 0 (since r > 0) and hence the sign of sinh(vy/7)

is the same as that of [ — m. It follows that

Yy [—m
smh(n) = Yl = )il (A.20)

and v is given by

L m)
— peimh=l p_p
v = nsinh [2(mi_1)1/2] (A.21)
PP
As indicated earlier, the expression for p is given by eq.(A.6) as
v o
p = 2y cosh(=)sinh(=). (A.22)

n n
Sinh(r/7) can be obtained by using the relationship sinh® A =
with eq.(A.12). This gives

cosh24-1 ip conjunction

m+l 1 _9
9Ty 2p _m+1-2p
sinh (77) = ( 5 ) = s . (A.23)

cosh(y/n) is known from eq.(A.15). Using eqs.(A.22), (A.15), and (A.23), we get
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(m + 1 = 2p)(m + 1 + 2p)'/?

=2\
P A[p(ml — p?)]*/? (A.24)
Consequently,
2p(% — 1)'/?
A= ———t— . (A.25)
(; + 5= 2)(-}; + v + 2)1/2
Finally, consider
e i e
gr + g-r = 2¢ — Alsinh( } + sinh( )l (A.26)
Using the standard formula,
sinh(A + B) + sinh(A — B) = 2sinh A cosh B, (A.27)
eq.(A.26) can be rewritten as
gr + g—r = 2€ — 2 sinh(l) cosh(z). (A.28)
U n

Cosh(r/n) in eq.(A.28) is obtained using the relation. cosh? A = Lco;hﬁm It follows
from eq.(A.12), that . '

coshz(i) = G p+m+l'
U 2 ip
Thus, using the values of sinh(y/n) from eq.(A.20), cosh(r/n) from eq.(A.29) and A

from eq.(A.25), it is seen that

(A.29)

oo = g plplml=p P Lom y@ptm D
B (m+ 1= 2p)(m + L+ )/ 2l — g2 2972
p(l —m)
Ry (A.30)

Consequently, we get

(A.31)




A.2 Johnson Sy Distribution

The transformation of the Johnson S Distribution is of the form

G—e¢ )
A+e—-G

where R is the standard normal random variable and € is a location parameter, A is a

R =7 +nIn( (A.32)

scale paramter, and v and 7 are the shape parameters of the Sg Distribution. Solving
eq.(A.32) for G, we obtain

A
G=¢e¢+————ms. A.33
1 +exp 1—;—’3 ( )
As was done in the previous section, we now proceed to find m,! and p in terms of

the parameters v, A, 7, and €. Thus,.

m = g3 — gr
A A
= — ) A.34
Tt op(ZZ) 1+ exp(D) (A.34)
Therefore,
xp(2=L) — exp(L=22
m= A () — exp(5) ] (A.35)

1 + exp(57) + exp(15F) + exp(25%)

and consequently,

. exp(%)exp(=E)[exp(f) — exp(F)]
m = )\1 T exp(EE ) +exp( S exp(z’y iy’ (A.36)

This implies

_) 2exp(3—"-21) sinh(T) (A37)
 exp(LE)[exp(— ) + exp(F) + exp(E) + exp(5E)] '
Finally, we get
o sinh(Z) (A.38)

cosh( ”) + cosh(% )

Proceeding in a similiar fashion, we find
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Il = g_, —g_3; (A.39)
sinh()
cosh(}) + cosh( +2’)

and

P = gr—Gg-r (A.40)
sinh()
cosh(%) + cosh(%)'

In summary, the values of m,[/ and p are

Asinh(T) Adl
™ T Cosh(Z) + cosh(EE) (A.41)
| Asinh(Z)
~ cosh(Z )+cosh("+2T)
) = Asinh(7)
cosh(%) + cosh(%)'
Hence,
cosh(Z) + cosh(1=%
Po_ (%) () (A.42)
m cosh(r )-I-cosh( ) ’
P cosh(7) + cosh( +2T)
[ cosh(’—)—}—cosh(n) ’

which gives

(A.43)




: - 2
A = cosh2(:) + cosh(7 27')cosh(’y * ..r) (A.44)
n n U
+ cosh(-r—) cosh('7 - 27') + cosh(z) cosh(7 + 2T)
U n n
and
B= coshz(i) + coshz(l) + 2cosh(l) cosh(i). (A.45)
n n n n
Using the identities
cosh(A + B)cosh(A — B) = cosh®(A) 4 cosh?(B) — 1 (A.46)
cosh(A + B) + cosh(A — B) = 2cosh(A) cosh(B)
cosh®(A) —sinh?(A) = 1
and applying them to eq.(A.45), we get
A = cosh2(-7;) + cosh?(—) (A.47)
U

SR S|

2
+2 cosh(;:-) cosh( )cosh(;—r) + sinh2(2—r).
n

B is smaller than A because the cosh function assumes only positive values and since
cosh(2n—') > 1 and sinhz(zn-’-) > 0. This gives ﬁ% > 1 or equivalently, -';%1 <L
From eq.(A.42)

r —2r
2cosh(%) + cosh() + cosh(5=)

p
14— = A4
+ m cosh(Z) + cosh(2) (A.48)
r : 2r
1+ P 2cosh(Z) + cosh(2) + cosh(i’/—t)——)
l cosh(Z) + cosh(2)

Multiplying the expressions in eq.(A.48) and using the identities in eq.(A.46) we get




(1+ —7%)(1 +5 = % (A.49)

[
where
‘)
C = 4cosh2(%) + 2cosh2(%)(1 + cosh(%) (A.50)
+ 4cosh(l)cosh(£)(cosh(—2-7-:) + 1)+ coshz(&) -1
n Ui n n
and
2,7 2,7 : r 2
D = cosh®(—) 4 cosh®(=) + 2 cosh(~) cosh(—). (A.51)
m Ui U] Ui
Using the property, cosh(2A4) + 1 = 2cosh? 4 in eq.(A.50), we get
2,7 2,7 2T ' |
C = 4cosh (;) + 4 cosh (;)cosh (;]-) (A.52)
gl 3/ T 4T 2,7
+ 8 cosh(—) cosh®(=) + 4 cosh®(—=) — 4 cosh*(—).
(2)cosh(5) ) )
Thus
C = 4cosh?(=)D. (A.53)
n
Finally, from eqs.(A.49) and (A.53) we get
(1+ 2)1+2) = 4cosh?(2). (A.54)
m ) oy
Solution for 7 results in
- (A.55)

" cosh {1+ B)(1+ D))
Now consider the sum of the terms in eq.(A.42). Using the identities in eq.(A.46).

on this sum we get
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2cosh(f) + cosh(ﬁ;,?-’-) + cosh(ﬂ’:n&)

PP _
m t7 = cosh(%) + cosh() (A-56)
2cosh(F) + 2cosh(2) cosh(%f)
B cosh(7) + cosh(2)
Solving the above equation for cosh(v/7), we get
L cosh(f)E+E-2)
h(=) = A.57
o) = E T 42) —den’(D) (A.57)

where again we have made use of the identities in eq.(A.46). From eq.(A.54) expres-
sions of cosh(r/n) and sinh®(r/n) are obtained and substituted in eq.(A.57). The

result is

(Z+F-20+ )+
0+ +E+ Rt -2 -1-2)

(R+ -2+ 2)1+ 5]
25 -1) |

cosh(-:’l—) (A.58)

Rather than solve this for v, it is preferable to derive sinh(vy/n) because sinh™(.)
yields the correct sign of 7 due to it being single valued. Again we use the identity

in eq.(A.46) to get sinh(.) from cosh(.). Thus

(2 = (= 9)211/1((12 Z @1()1 +5) -4 (A.59)

To see which root should be taken in the first factor in the numerator, observe from

eq.(A.42) that

2sinh(2) sinh(%})
cosh(Z) + cosh(2)’

r
n

P_P _
I m

(A.60)

where the hyperbolic identity, cosh(A+ B)—cosh(A— B) = 2sinh(A) sinh(B), is used.
The denominator on the right of eq.(A.60) is always positive. Also, sinh(2r/n) > 0
since r > 0. Hence, it follows that the sign of sinh(y/n) is the same as that of
p/l — p/m. Eq.(A.59) then becomes

80



L -2+ 20+ -4

h LY — m m . .

sin (77) 2Z2 1) (A.61)
The value of 4 is consequently given by
(B B0+ 2) (14 B) - 4y
v = nsinh™'[ EA Y ] (A.62)
The parameter A can be evaluated using the expression for p in eq.(A.41).

= plcosh(Z) + cosh(2)] ' (A.63)

B sinh(Z) ' '

Cosh(r/n) and sinh(r/n) are known in terms of p,/ and m from eq.(A.54) and
cosh(v/n) is obtained from eq.(A.59). Thus

E)14+2)M/2(R 4B
{[(1_1__1%)(1_*_%)]1/2_*_ A+ Z2)+ P22+ E 2)}

2
-1

o (50517 (2.6
Going through the algebra we get
[(1+ 2)(1+ 2)]/2[1 + afi=d]
A= p Cog =) (A65)
[+ B+ 5 -7
which gives
14 Z)(1 4+ 2)V/2[(1 + &)(1 + &) —4]1/2
3= plt ) 1)](2£-(—1)m)( i (A.66)
ml
Consequently,
14 2)(1 4 2)]2 —4(1 + 2)(1 + 2)}1/2
IR (A7)
ml
Finally the formula for A is obtained as
2 2Y _ 912 _ 411/2

(-1

For €, eq.(A.33) is used to determine the sum




gr+9-r = 2¢ ' (A69)

+ A . + . ]
l+exp(LF) 1 +exp(7%’-) '

This is easily shown to be equivalent to

+gor =2+ AL sinh(3) AT0
r ¥ g-r = et All = cosh(%) + cosh(Z) ' (A.70)
From eq.(A.63), this reduces to
sinh(2
gr+g_r =2+ A — E___Qn_) (A.71)
sinh(Z)

Substituting the previously determined values of sinh(y/7n) and sinh(r/n) in terms of
p,l and m from eqs.(A.61) and (A.54) respectively, quickly yields the desired result

for € as

(o grtgr A p(E-7)

5 —-2-+2(J",_LZ}_1). (A.72)
A.3 Johnson S; Distribution
The Johnson Sy Distribution is given by the transformation of the form
R=~"4+nn(G —¢) (A.73)

where again R is a standard normal variable, € is a location parameter, and vy and 7

are the shape parameters. Solving eq.(A.73) for G we get

x

G = € + exp(— 7 ). (A.74)
Then
m = g3 —¢r
3r— r—a*
= exp( ) — exp( )
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= expl )= exp(——L) (A.T5)
P = Gr—g-r
— * —_p — »*
= exp(——1) - exp(—)
It follows that
m 2r
—_— = exp —— A.76
" ( ; ) (A.76)
[ -2r
Lo exp(EE
p n
and therefore ':—21 =1.
Moreover, the value of 7 is obtained from eq.(A.76) as
2r
n= ln(%)' (A.T7)
From eqs.(A.75) and (A.76),
_ S ENTURY ! 1/2
p =exp(——)[(—)""* = (- A.T8
( 77)[(10) (p) ] | (A.78)
which yields v~ as
* = g ln[-2——]. A.79
Finally,
o r r
gr+9-r = 2¢+ eXP(—;‘)[eXP(;) + eXP(—;)]- (A.80)

Substituting the known expressions for exp(—+*/7) and exp(r/n) from egs.(A.75) and
(A.76) respectively, we get the desired result for € as

-+

_9 +g-r
2

€

1
p

- : A.81
] (A.81)

s |33
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Appendix B

Connections between gq, kq, Pa

According to eq.(48) of chapter 2, the Gaussian random variable R is related to the

non-Gaussian random variable G by the transformation

R=v+nfi(G;\e) (B.1)

where fi(g; A, €) are single valued monotonically increasing functions, : = 1,2, 3. Let
ro and go satisfy eq.(B.1). Because of the single-valued monotonically increasing -

nature of the transformation

Pr(G < go) = Pr(R < ro). (B.2)

From a relative frequency point of view

No. of observations less than equal to ro

Pr(R < ro) ~ (B.3)

n
where n is the total number of observations.

Now assume that n observations of the random variable G are obtained. Ordering
the observations of G from the smallest to the largest, denote the k' ordered ob-
servation by ¢g*. Then k equals the number of observations less than or equal to g*.
Corresponding to the ordered observations of the random variable G are ordered real-
izations of the random variable R (See eq.(2.18)). Denote the k** ordered realization

of R by r*. Because the transformation in eq.(B.1) is single valued and monotonically

increasing, it follows that
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T

k

Pr(R<r*)=Pr(G<¢") =~ -~ (B.4)
Introducing the “continuity correction”, as was done with the q-q and p-p plots in
chapter 1, Pr(R < r*) is approximated by

k-1
Pr(R<r*) =~ Z,
n

By definition,

(B.5)

P, = Pr(R < a)

(B.6)
where a = 3r,r, —r, —3r. We define the integer k, such that

k, —
P, =~
where

(B.7)

ko, =[nP, + l]

a — a 2 )

[.] denotes the closest integer and a = 3r,r, —r, —3r.

(B.8)
Equations (B.6) and (B.7) imply that a approximately equals the k‘* ordered sam-

ple of R. Note that the k!* ordered sample of G is g*+, where r*= and g*= satisfy
eq.(B.1). From equations (B.4) and (B.5)

. k, — %
Pr(G<gk)=Pr(R<r*)x= Pr(R<a)~ 2, (B.9)
n
It follows, given P,, that one can determine k,, and given k,, one can determine g,
by the simple relation
ga = gFe. (B.10)
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